Ever Since The Dawn Of Time Man Has Found New Ways Of Killing

Ever since the dawn of time man has found new ways of killing each other. The most destructive way of killing people known to man would have to be the atomic bomb. The reason why the atomic bomb is so destructive is that when it is detonated, it has more than one effect. The effects of the atomic bomb are so great that Nikita Khrushchev said that the survivors would envy the dead (International Physicians for the Prevention of Nuclear War, 1982). These devastating physical effects come from the atomic bomb’s blast, the atomic bomb’s thermal radiation, and the atomic bomb’s nuclear radiation.

An atomic bomb is any weapon that gets its destructive power from an atom. This power comes when the matter inside of the atoms is transformed into energy. The process by which this is done is known as fission. The only two atoms suitable for fissioning are the uranium isotope U-235 and the plutonium isotope Pu-239 (Outlaw Labs). Fission occurs when a neutron, a subatomic particle with no electrical charge, strikes the nucleus of one of these isotopes and causes it to split apart.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

When the nucleus is split, a large amount of energy is produced, and more free neutrons are also released. These neutrons then in turn strike other atoms, which causes more energy to be released. If this process is repeated, a self-sustaining chain reaction will occur, and it is this chain reaction that causes the atomic bomb to have its destructive power (World Book, 1990). This chain reaction can be attained in two different ways. The first type of atomic bomb ever used was a gun-type. In this type two subcritical pieces of U-235 are placed in a device similar to the barrel of an artillery shell.

One piece is placed at one end of the barrel and will remain there at rest. The other subcritical mass is placed at the other end of the barrel. A conventional explosive is packed behind the second subcritical mass. When the fuse is triggered, a conventional explosion causes the second subcritical mass to be propelled at a high velocity into the first subcritical mass. The resulting combination causes the two subcritical masses to become a supercritical mass.

When this supercritical mass is obtained, a rapid self-sustained chain reaction is caused (World Book, 1990). This type of atomic bomb was used on Hiroshima, and given the nickname “Little Boy” after Franklin D. Roosevelt (Outlaw Labs). The second type of atomic bomb is an implosion bomb. In this type a subcritical mass, which is in the shape of a ball, is placed in the center of the weapon. This subcritical mass is surrounded in a spherical arrangement of conventional explosives. When the fuse is triggered all of the conventional explosives explode at the same time.

This causes the subcritical mass to be compressed into a smaller volume, thus creating a supercritical mass to be formed. After this supercritical mass is obtained, a self-sustained chain reaction takes place and causes the atomic explosion (World Book, 1990). This type of stomic bomb was used on Nagasaki, and given the nickname “Fat Man” after Winston Churchill (Outlaw Labs). The blast from an atomic bomb’s explosion will last for only one-half to one second, but in this amount of time a great deal of damage is done (Physicians and Scientists on Nuclear War, 1981). A fireball is created by the blast, which consists mainly of dust and gasses.

The dust produced in this fireball has no substantial effect on humans or their environment. However, as the gasses expand a blast wave is produced. As this blast wave moves, it creates static overpressure. This static overpressure then in turn creates dynamic pressure. The static overpressure has the power to crush buildings.

The dynamic pressure creates winds, which have the power to blow down trees (International Physicians for the Prevention of Nuclear War, 1982). The blast pressure and fireball together only last for approximately eleven seconds, but because it contaitns fifty percent of the atomic bomb’s latent energy a great deal of destruction occures (The Committee for the Compilation of Materials on Damage Caused by the Atomic Bombs in Hiroshima and Nagasaki, 1981). In Hiroshima the blast from the atomic bomb was measured to be about four and a half to six and seven tenths tons of pressure per square mere, while in Nagasaki the blast was measured to be about six to eight tons of pressure per square meter (International Physicians for the Prevention of Nuclear War, 1982). Because of thsi dramatic change in the pressure most of the cities were destroyed. The static overpressure in Hiroshima caused ninety-one and nine tenths percent of all the buildings to be destroyed, while in Nagasaki it casued thirty-six and one tenth of all of the buildings to be destroyed.

The static overpressure created a dynamic pressure that had winds up to four hundred miles per hour (The Committee for the Compilation of Materials on Damage Caused by the Atomic Bombs in Hiroshima and Nagasaki, 1981). These winds caused minor scrathces, lacerations, or compound fractures, which came about when people and glass fragments were projected through the air. By combining the results of the static overpressure and the dynamic pressure on can begin to see what damage was caused by the atomic bomb’s blast. The total number affected in Hiroshima was approximately seventy-eight thousand people, while in Nagasaki the total number affected was approximately forty-five thousand people (International Physicians for the Prevention of Nuclear War, 1982). The thermal radiation produced by an atomic bomb explosion will account for thirty-five percent of the atomic bomb’s damage. Thermal radiation can come in either one of three forms; ultraviolet radiation, visible radiation, or infrared radiation. The ultraviolet radiation is absorbed so rapidly by air particles that it has no substantial effect on people (World Book, 1990).

However, the visible and infrared radiation creates an enormous amount of heat to be produced, approximately ten million degrees Celsius at the hypocenter (Physicians and Scientists on Nuclear War, 1981). This heat has two main effects. The first is known as flash burns. These flash burns are produced by the flash of thermal radiation right after the explosion. Flash burns can be either first degree burns (bad sun burns), second degree burns ( blisters, infections, and scars), or third degree burns (destroyed skin tissue).

The second type is known as flame burns. These are burns that come from one of t …